• <menu id="m6ags"></menu>
    搜索熱:疲勞 光伏
    掃一掃 加微信
    首頁 > 期刊論文 > 論文摘要
    開孔泡沫銅的壓-壓疲勞行為
              
    Compression-Compression Fatigue Behavior of Open-Cell Foam Copper

    摘    要
    對具有相同孔徑的開孔泡沫銅進行單軸準靜態壓縮和壓-壓疲勞試驗,分析開孔泡沫銅的壓縮特性和疲勞行為,并討論了疲勞失效方式及破壞機理。結果表明:開孔泡沫銅的壓縮應力-應變曲線由彈性變形階段、平臺應力階段、密實階段3個階段組成;在壓-壓疲勞過程中開孔泡沫銅主要經歷了疲勞損傷積累區、應變激增區和持續破壞區3個階段,應力水平越低開孔泡沫銅的壽命越長;在剪切力作用下,開孔泡沫銅中間部位形成一條與水平方向存在一定角度的擠壓帶,隨著累積應變的增加,擠壓帶中孔洞結構持續破壞而形成一條幾乎水平的壓潰帶;開孔泡沫銅的疲勞失效機理為孔棱表皮脫落、頸縮、斷裂以及棱柱結的開裂。
    標    簽 開孔泡沫銅   壓-壓疲勞行為   孔棱   棱柱結   open-cell foam copper   compression-compression fatigue behavior   pore edge   pore junction  
     
    Abstract
    Uniaxial quasi-static compression and compression-compression fatigue tests were performed on open-cell foam copper with the same pore size. The compression characteristics and fatigue behavior of open-cell foam copper were analyzed, and the fatigue failure mode and failure mechanism were discussed. The results show that the compressive stress-strain curve of open-cell foam copper consisted of elastic deformation stage, platform stress stage, and compaction stage. During compression-compression fatigue process, the open-cell foam copper mainly experienced fatigue damage accumulation zone, strain surge zone, and continuous failure zone. The lower the stress level, the longer the life of open-cell foam copper. Under the action of shearing force, the middle part of the open-cell foam copper formed an extruded zone with a certain angle to the horizontal direction. As the accumulated strain increasing, the pore structure in the extruded zone continued to be destroyed and formed an almost horizontal crush zone. The fatigue failure mechanism of open-cell foam copper was the peeling, necking, fracture of pore edges, and cracking of pore junction.

    中圖分類號 TG115.5   DOI 10.11973/jxgccl202107004

     
      中國光學期刊網論文下載說明


    所屬欄目 試驗研究

    基金項目 國家自然科學基金資助項目(51471036);河南省研究生創新科研項目(CX2018B559)

    收稿日期 2020/5/25

    修改稿日期 2021/3/2

    網絡出版日期

    作者單位點擊查看

    備注楊洋(1993-),男,河南周口人,碩士研究生

    引用該論文: YANG Yang,CHEN Jian,LI Cong,JIANG Xueao. Compression-Compression Fatigue Behavior of Open-Cell Foam Copper[J]. Materials for mechancial engineering, 2021, 45(7): 17~21
    楊洋,陳薦,李聰,姜雪傲. 開孔泡沫銅的壓-壓疲勞行為[J]. 機械工程材料, 2021, 45(7): 17~21


    論文評價
    共有人對該論文發表了看法,其中:
    人認為該論文很差
    人認為該論文較差
    人認為該論文一般
    人認為該論文較好
    人認為該論文很好
    分享論文
    分享到新浪微博 分享到騰訊微博 分享到人人網 分享到 Google Reader 分享到百度搜藏分享到Twitter

    參考文獻
    【1】XU J L, JI X B, ZHANG W, et al. Pool boiling heat transfer of ultra-light copper foam with open cells[J]. International Journal of Multiphase Flow, 2008, 34(11):1008-1022.
     
    【2】MANCIN S, DIANI A, DORETTI L, et al. Liquid and flow boiling heat transfer inside a copper foam[J]. Procedia Materials Science, 2014, 4:365-370.
     
    【3】RONG J, ZHANG T, QIU F X, et al. Design and preparation of efficient, stable and superhydrophobic copper foam membrane for selective oil absorption and consecutive oil-water separation[J]. Materials & Design, 2018, 142:83-92.
     
    【4】BARIN R, RASHID-NADIMI S, BIRIA D, et al. Direct electrochemical regeneration of 1, 4-NADH at the copper foam and bimetallic copper foam[J]. Electrochimica Acta, 2017, 247:1095-1102.
     
    【5】MARTINELLI M, BENTIVOGLIO F, CARON-SOUPART A, et al. Experimental study of a phase change thermal energy storage with copper foam[J]. Applied Thermal Engineering, 2016, 101:247-261.
     
    【6】WANG L, QIAN Y T, DU J M, et al. Facile synthesis of cactus-shaped CdS-Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance[J]. Applied Surface Science, 2019, 492:849-855.
     
    【7】LIU Y X, ZHOU W, LIN Y, et al. Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor[J]. Applied Energy, 2019, 246:24-37.
     
    【8】FENG H J, CHEN Y, WANG Y H. Multi-scale porous copper foam current collector for high performance lithium ion battery[J]. Procedia Engineering, 2017, 215:136-144.
     
    【9】BERNARD S, KRISHNA BALLA V, BOSE S, et al. Compression fatigue behavior of laser processed porous NiTi alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13:62-68.
     
    【10】LI F P, LI J S, HUANG T T, et al. Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65:814-823.
     
    【11】GUILLÉN T, OHRNDORF A, TOZZI G, et al. Compressive fatigue behavior of bovine cancellous bone and bone analogous materials under multi-step loading conditions[J]. Advanced Engineering Materials, 2012, 14(5):B199-B207.
     
    【12】LI F P, LI J S, KOU H C, et al. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications[J]. Materials Science and Engineering:C, 2016, 60:485-488.
     
    【13】ÖZBILEN S, LIEBERT D, BECK T, et al. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders[J]. Materials Science and Engineering:C, 2016, 60:446-457.
     
    【14】BERNARD S, BALLA V K, BOSE S, et al. Rotating bending fatigue response of laser processed porous NiTi alloy[J]. Materials Science and Engineering:C, 2011, 31(4):815-820.
     
    【15】PINTO H, ARWADE S R, VEALE P. Response of open cell aluminum foams to fully reversed cyclic loading[J]. Journal of Engineering Mechanics, 2011, 137(12):911-918.
     
    【16】ZHOU J, SOBOYEJO W O. Compression-compression fatigue of open cell aluminum foams:Macro-/micro- mechanisms and the effects of heat treatment[J]. Materials Science and Engineering:A, 2004, 369(1/2):23-35.
     
    【17】李雄飛. 高容量鋰離子電池負極集流體泡沫銅壓縮及疲勞行為研究[D].長沙:長沙理工大學,2017. LI X F. Study on the compression and fatigue behaviors of copper foam for anode current collector in high capacity lithium ion[D]. Changsha:Changsha University of Science and Technology, 2017.
     
    【18】戴碩威. 鋰離子電池負極集流體泡沫銅腐蝕及環境疲勞行為研究[D].長沙:長沙理工大學,2018. DAI S W. Study on the corrosion behaviors and fatigue behaviors in different environment of copper foam for anode current collector in lithium-ion battery[D]. Changsha:Changsha University of Science and Technology, 2018.
     
    【19】WANG C Z, GAN X P, TAO J M, et al. Compression and electromagnetic shielding properties of CNTs reinforced copper foams prepared through electrodeposition[J]. Vacuum, 2019, 167:159-162.
     
    【20】CASTRO G, NUTT S R, XU W C. Compression and low-velocity impact behavior of aluminum syntactic foam[J]. Materials Science and Engineering:A, 2013, 578:222-229.
     
    【21】YANG X D, HU Q, DU J, et al. Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method[J]. International Journal of Fatigue, 2019, 121:272-280.
     
    相關信息
       標題 相關頻次
     304不銹鋼表面磁控濺射制備Cr-C涂層的組織與耐高溫電化學腐蝕性能
     2
     45鋼棒料沖擊功偏低的原因分析
     2
     表面處理對Zr-Sn-Nb合金耐磨損和耐腐蝕性能的影響
     2
     超高效液相色譜-串聯質譜法測定4種禽畜肉中泰地羅新殘留量
     2
     紅景天提取物抗氧化性能分析研究
     2
     基于免疫算法的316L不銹鋼高溫低周疲勞壽命預測
     2
     激光選區熔化成形鋁合金的組織、性能與傾斜面成形質量
     2
     聚酰亞胺樹脂/立方氮化硼砂輪的制備及其磨削性能
     2
     顆粒粒徑對噴射沉積制備SiC顆粒增強鋁硅合金復合材料顯微組織及拉伸性能的影響
     2
     量子點增敏堿性魯米諾-高碘酸鉀化學發光法測定五氯酚鈉
     2
     燃料電池用316L不銹鋼雙極板表面磁控濺射鉻涂層的耐腐蝕性能
     2
     熔融碳酸鹽燃料電池陽極用多孔銅鎳鋁合金的制備及其壓縮性能
     2
     一種苯胺類席夫堿對N80鋼在鹽酸介質中的緩蝕性能
     2
     316L不銹鋼的價電子結構與拉伸性能
     1
     F690海洋工程鋼在大氣中不同應力條件下的疲勞極限及裂紋擴展行為
     1
     FPSO生產水閃蒸罐A底部出口管線盲封頭穿孔原因分析
     1
     IrOx/Ti電極測定低溫溶液的pH
     1
     V-4Cr-4Ti合金的時效與冷加工強化
     1
     W4Mo3Cr4V高速鋼稀土多元共滲層的性能
     1
     X70管線鋼CO2濕氣頂部的腐蝕行為
     1
     X射線粉末衍射法測定晶體硅切割砂漿廢料中硅的含量
     1
     保溫原油儲罐外壁腐蝕成因及防腐蝕措施
     1
     不同鉻含量耐候鋼在高濕熱模擬環境中的耐腐蝕性能
     1
     不同焊接熱輸入下AZ31鎂合金TIG焊接接頭的顯微組織與力學性能
     1
     不同坡口面角度鍍鋅鋼/鋁合金激光熔釬焊接頭的界面組織和拉伸性能
     1
     超高壓液相色譜-軌道阱質譜法測定加工食品中30種禁用工業染料
     1
     電鍍電流密度對錫/電鍍銅接頭界面空洞的影響
     1
     電化學充氫條件下夾雜物對管線鋼氫致開裂敏感性的影響
     1
     多晶金剛石微粉的制備及其得率和耐磨性
     1
     復合包覆技術在海港工程中的防腐蝕應用
     1
    小草青青 免费观看,他添的我好湿好爽视频,日本娇妻在丈面前被耍了在线
  • <menu id="m6ags"></menu>